DSpace Repository

SolarPILOT UYGULAMASIYLA ISPARTA İLİNDE GÜNEŞ KULESİ MODELLEMESİ

Show simple item record

dc.creator ŞEN, Serhat; SÜLEYMAN DEMİREL ÜNİVERSİTESİ
dc.creator ÜÇGÜL, İbrahim; SÜLEYMAN DEMİREL ÜNİVERSİTESİ
dc.date 2021-12-20T00:00:00Z
dc.date.accessioned 2022-05-10T10:56:39Z
dc.date.available 2022-05-10T10:56:39Z
dc.identifier https://dergipark.org.tr/tr/pub/jesd/issue/66319/809392
dc.identifier 10.21923/jesd.809392
dc.identifier.uri http://acikerisim.sdu.edu.tr/xmlui/handle/123456789/96098
dc.description Bu çalışma, özellikle heliostat aynaların alıcıya odaklanarak yüksek sıcaklıklarda enerji üretimi için çalışmalarda bulunulan Merkezi Odaklamalı Güneş Güç Sistemi veya Güneş Kulesi olarak adlandırılan sisteme ve sistem tasarımlarına farklı bakış açısı getirmek amacıyla SolarPILOT programı tanıtılmıştır. Isparta ili için günlük 10 MWt kapasiteli, yıllık enerji üretimi gerçekleştirilecek planlamasıyla, sistem uygulanabilirliği için sistem tasarımının en önemli hesaplama parametreleri olan heliostat alan ve heliostat alanın termal gücüne bağlı alıcı ve heliostat alan yerleşimi incelenmiştir. Bu işlemler için, güneş ışınım modeli, güneşlenme modeli, sistem tasarım parametreleri, heliostat seçim kriterleri, optimizasyon simülasyonu gerçekleştirilmiştir. Bu hususların adım adım SolarPILOT uygulamasında kullanılan modeller açıklanarak, hesaplama için seçimi gerçekleştirilen model açıklamasıyla birlikte verilmiştir. Uygulama tasarım değerleri tespit edilmiş olup, uygulamanın yapılması planlanan arazinin yıllık ortalama DNI (Direct Normal Irradiation (Doğrudan Normal Işınım)) verisi tespit edilerek sistem optimizasyonu gerçekleştirilmiştir. Alan düzenlemesi gerçekleştirilerek sistem için gerekli heliostat alanı tespit edilmiştir. Yaklaşık termal kayıplar belirlenerek sistem hesaplamaları tamamlanmıştır. Bulgular, güneş kulesi modelinin Isparta ili için uygulanabilir olduğunu göstermiş ve tasarım parametreleri elde edilmiştir.
dc.description In this study, the SolarPILOT program has been introduced to bring a different perspective to the system and system designs called Central Focused Solar Power System or Solar Tower, where studies are carried out for energy generation at high temperatures, especially by focusing on the receiver of heliostat mirrors. The most important calculation parameters of the system design for the system applicability, the heliostat area and the receiver and heliostat area settlement depending on the thermal power of the heliostat area, were examined for the province of Isparta, with a daily capacity of 10 MWt and annual energy production planning. For these processes, solar radiation model, insolation model, system design parameters, heliostat selection criteria, optimization simulation were performed. These issues are explained step by step the models used in the SolarPILOT application, together with the model description selected for calculation. The application design values were determined, and the system optimization was performed by determining the annual average DNI (Direct Normal Irradiation) data of the land to be implemented. The heliostat area required for the system was determined by field arrangement. The system calculations have been completed by determining the approximate thermal losses. The findings showed that the solar tower model is applicable for the province of Isparta and design parameters were obtained.
dc.format application/pdf
dc.language tr
dc.publisher Süleyman Demirel Üniversitesi
dc.publisher Süleyman Demirel University
dc.relation https://dergipark.org.tr/tr/download/article-file/1340966
dc.source Volume: 9, Issue: 4 1302-1325 en-US
dc.source 1308-6693
dc.source Mühendislik Bilimleri ve Tasarım Dergisi
dc.subject Güneş Enerjisi,Heliostat Alan,Güneş Kulesi,Alıcı,SolarPILOT
dc.subject Solar Power,Heliostat Field,Solar Tower,Receiver,SolarPILOT
dc.title SolarPILOT UYGULAMASIYLA ISPARTA İLİNDE GÜNEŞ KULESİ MODELLEMESİ tr-TR
dc.title SOLAR TOWER MODELING WITH THE SOLARPILOT APPLICATION IN ISPARTA en-US
dc.type info:eu-repo/semantics/article
dc.citation SAM, 2020. Erişim Tarihi:17/07/2020. https://sam.nrel.gov/
dc.citation NREL, 2020. Solar Power Tower Integrated Layout and Optimization Tool. Erişim Tarihi: 17/07/2020. https://www.nrel.gov/csp/solarpilot.html
dc.citation European Commission, 2019. Photovoltaic Geographical Information System. Erişim Tarihi: 23/07/2020. https://re.jrc.ec.europa.eu/pvg_tools/en/#TMY
dc.citation Freedictionary, 2020, Erişim Tarihi: 31/08/2020. https://encyclopedia2.thefreedictionary.com /Atmospheric+Attenuation#:~:text=a%20reduction%20in%20the%20intensity,molecules%20of%20air%20and%20aerosols.
dc.citation NREL, 2018. SolarPILOT (Sürüm 1.3.8)[Yazılım]. Denver, USA. Tedarik edilebileceği adres: https://www.nrel.gov/csp/solarpilot-download.html
dc.citation Lopez, J.N.M., 2016, The inuence of irradiance concentration using an asymmetric reector on the electrical performance of a PVT hybrid collector with standard monocrystalline cells, Lizbon Üniversitesi, Enerji Mühendisliği ve Yönetimi bölümü, Yüksek Lisans tezi, 66 s., Lizbon.
dc.citation Cole, I.R., Gottschalg, R., 2015. Optical modelling for concentrating photocoltaic systems: insolation transfer variations with solar source descriptions, IET Renewable Power Generation, 9(5), 413-419.
dc.citation Kamada, R.F., Flocchini, R.G., Gaussian Solar Flux Model, Solar Energy, 1986,36(1), 73-87.
dc.citation System Advisor Model, Overview of NREL’s SolarPilot(TM) and SolTrace Open-source Softwate(video dosyası) Erişim Tarihi:26/07/2020 https://www.youtube.com/watch?v=wiYV2VLqr_k
dc.citation Ramadevi, M.C., Limb Darkening, Erişim Tarihi: 25/07/2020 http://www.iucaa.in/~dipankar/ph217/contrib/limb.pdf
dc.citation Wang, Y., Potter, D., Asselineau, C.A., Corsi, C., Wagner, M., Caliot, C., Piaud, B., Blanco, M., Kim, J.S., Pye, J., Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems, 2020, Solar Energy 195 (2020) 461–474.
dc.citation Bird, R., Hulstrom, R.L., 1980, Direct Insolation Models, Erişim Tarihi: 26/07/2020 https://www.nrel.gov/docs/legosti/old/344.pdf
dc.citation Hanrieder, N., Sengupta, M., Xie, Y., Wilbert, S., Paal, R.P., Modeling beam attenuation in solar tower plants using common DNI measurements, Solar Energy, 2016, 129, 244-255.
dc.citation SAND2008-8053, 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Ulusal Laboratuvarları. Kaliforniya.
dc.citation Bouamra, M., Merzouk, M., 2019, Cosine Efficiency Distribution with Reduced Tower Shadowing Effect in Rotating Heliostat Field, Arabian Journal for Science and Engineering, 44, 1415-1424.
dc.citation EİGM, 2020, Erişim Tarihi: 07/09/2020. http://www.yegm.gov.tr/MyCalculator/pages/32.aspx
dc.citation Wikipedia, Yaz Gündönümü. Erişim Tarihi: 28/07/2020. https://tr.wikipedia.org/wiki/Yaz_g%C3%BCnd%C3%B6n%C3%BCm%C3%BC
dc.citation Sarıgül, T., 2018, Ekinoks Nedir? Erişim Tarihi:28/07/2020. http://bilimgenc.tubitak.gov.tr/makale/ekinoks-nedir
dc.citation Wikipedia Ekinoks. Erişim Tarihi:01/09/2020. https://tr.wikipedia.org/wiki/Ekinoks
dc.citation Wikipedia Kış Gündönümü. Erişim Tarihi:28/07/2020. https://tr.wikipedia.org/wiki/K%C4%B1%C5%9F_g%C3%BCnd%C3%B6n%C3%BCm%C3%BC
dc.citation Ceylan. İ., Gürel. E., 2017, Güneş Enerjisi Sistemleri ve Tasarımı. Dora yayınevi, 196s, Bursa.
dc.citation European Commission, 2020, Report on Best Available Technologies (BAT) for central receiver systems. 221766, 70.
dc.citation Gadalla, M., Saghafifar, M., 2018, A concise overview of heliostat fields-solar thermal collectors: Current state of art and future perspective, International Journal Of Energy Research, 3145- 3163.
dc.citation Arrif, T., Benchabane, A., Germoui, M., Bezza, B., Belaid. A., 2018. Optimisation of heliostat field layout for solar power tower systems using iterative artificial bee colony algorithm: a review and case study. Erişim Tarihi: 29/07/2020. https://www.tandfonline.com/doi/full/10.1080/01430750.2018 .1525581
dc.citation Siala, F.M.F., Elayeb, M.E., Mathematical formulation of a graphical method for a no-blocking heliostat field layout, 2001, Yenilenebilir Enerji, 23,77-92.
dc.citation Mehos, M., Turchi, C., Vidal, J, Wagner, M., Ma, Z., Ho, C., Kolb, W., Andraka, C., Kruzenga, A., 2017, Concentrating Solar Power Gen3 Demonstration Roadmap. NREL/TP-5500-67464, 127.
dc.citation Wagner, M.J., Wendelin, T., 2018, SolarPILOT: A power tower solar field layout and characterization tool, Solar Energy, 171, 185-196.
dc.citation Qiu, Y., He, Y. L., Li, P., Du, B. C., A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver Erişim Tarihi: 07/08/2020. https://hal.archives-ouvertes.fr/hal-01344014v3
dc.citation Khalsa, S.S.S., Ho, C.K., Andraka, C.E., An Automated Method To Correct Heliostat Tracking Racking Errors, Erişim Tarihi:07/08/2020. https://www.osti.gov/servlets/purl/1106781
dc.citation Andraka, C.E., 2008. Cost/Performance Tradeoffs For Reflectors Used In Solar Concentrating Dish Systems. Erişim Tarihi: 08/08/2020. https://energy.sandia.gov/wp-content/gallery/uploads/Cost-performance_Tradeoffs.pdf
dc.citation Leea, H.J., Kimb, J.K., Leeb, S.N., Yoonb, H.K., Kangb, Y.H., Parkc, M.H., 2015, Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea, Energy Procedia, 69, 126 – 131.
dc.citation Göttsche, J., Lampkowski, M., Bezerra, P.H.S., Teramoto, É.T., Boura, C.T., 2017. A Method For Calculating The Slope Error Of Mirrored Surfaces Consisted Of Facets Curved In One Axis Used In Concentrated Solar Power (CSP) Tower Systems. Erişim Tarihi:08/08/2020. http://energia.fca.unesp.br/index.php/energia/article/view/2271
dc.citation González, A.S., 2016, Heliostat field aiming strategies for solar central receivers, Carlos III de Madrid Üniversitesi, Termal ve Akışkan Mühendisliği Bölümü, Doktora tezi, 104s., Madrid.
dc.citation Hekim, M., 2017, Merkezi Alıcı Sistemli(MAS) Güneş Güç Santrali Birecik Uygulaması, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 137s., Ankara.
dc.citation Bonanos, A.M., 2012, Error analysis for concentrated solar collectors, Renewable Sustainable Energy, 4,1-11.
dc.citation Xu, E., Yu, Q., Wang, Z., Yang, C., 2011, Modeling and simulation of 1 MW DAHAN solar thermal power tower plant, Renewable Energy, 36, 848-587.
dc.citation Christian, J.M., Ho, C.K., 2012, CFD simularion and heat loss analysis of the solar two power tower receiver, Proceedings of ASME 2012, 23-26 temmuz, San Diego, 1-9.
dc.citation Şen, S., 2021, Tepe Heliostat Alanlı Güneş Kulesi Uygulamaları, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 112s, Isparta,


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account