DSpace Repository

MAKİNE ÖĞRENMESİ TEKNİKLERİ İLE VERİ ÇOĞALTMA KULLANARAK BİR MOBİL UYGULAMADA KULLANICI YORUMLARININ SINIFLANDIRILMASI

Show simple item record

dc.creator ÇELİK, Özer; ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ
dc.creator KAPLAN, Gürkan; ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ
dc.date 2021-12-20T00:00:00Z
dc.date.accessioned 2022-05-10T10:56:40Z
dc.date.available 2022-05-10T10:56:40Z
dc.identifier https://dergipark.org.tr/tr/pub/jesd/issue/66319/906211
dc.identifier 10.21923/jesd.906211
dc.identifier.uri http://acikerisim.sdu.edu.tr/xmlui/handle/123456789/96107
dc.description Son yıllarda sosyal medya kullanımının artması ile beraber neredeyse her konuda takip edilemeyecek kadar çok yorum bulunmaktadır. Bu yorumlar hem olumlu hem de olumsuz yorumlar içermektedir. Fakat günümüzde çok sayıda yorumu takip etmek neredeyse imkansızdır. Bu çalışmada açık erişimli Anadolu Üniversitesi’nin mobil uygulamasına yapılan kullanıcı yorumlarının çeşitli makine öğrenmesi teknikleri ile metin sınıflandırması yapıldı. Uygulamaya yapılan yorumların içerikle mi yoksa uygulama ile mi ilgili olduğu tahmin edilmeye çalışıldı. Buna ek olarak aşırı örnekleme ve az örneklemenin metin sınıflandırma performansına etkisi incelendi. Bu amaçla sentetik azınlık aşırı örnekleme tekniği (Smote), yoğun en yakın komşu az örnekleme tekniği (CNN) ve rasgele az örnekleme tekniği (RUS) veri setine uygulandı. Mobil uygulamadan alınan 1008 kullanıcı yorumu içerik ve uygulama açısından süreçlerden geçirilerek sınıflandırıldı. Smote aşırı örnekleme sınıflandırmasında ANN algoritması %93.57 doğrulukla en iyi sınıflandırma olarak bulundu. CNN algoritmasında Rassal Orman algoritması %72.22 doğrulukla en iyi sınıflandırmalar olarak bulundu. RUS tekniğinde ise Aşırı Gradient artırma %84.44 doğrulukla en iyi sınıflandırma olarak bulundu.
dc.description With the increasing use of social media in recent years, there are too many comments to be followed on almost every issue. These comments contain both important and unimportant information. But, it is almost impossible to follow of so many comments nowadays. In this study, text classification of user comments made to the Anadolu University mobile application was made. It was estimated whether the comments made on the application were related to the content or the application. In addition, the effect of oversampling and undersampling on text classification performance was investigated. For this purpose, synthetic minority oversampling technique (Smote), condensed nearest neighbor undersampling technique (CNN) and random undersampling (RUS) technique were applied to the data set. 1008 user comments received from mobile application were classified by these techniques. In the Smote oversampling classification, ANN algorithm was found to have the best classification with 93.57% accuracy. In the undersampling classification, Random Forest algorithm was found to have the best classifications with 72.22% accuracy. In the random sampling classification, Extreme Gradient Boosting algorithm was found to have the best classification with 84.44% accuracy.
dc.format application/pdf
dc.language en
dc.publisher Süleyman Demirel Üniversitesi
dc.publisher Süleyman Demirel University
dc.relation https://dergipark.org.tr/tr/download/article-file/1672468
dc.source Volume: 9, Issue: 4 1398-1407 en-US
dc.source 1308-6693
dc.source Mühendislik Bilimleri ve Tasarım Dergisi
dc.subject Metin sınıflandırma,Makine öğrenmesi,Yapay Zeka,Doğal dil işleme
dc.subject Text classification,Machine learning,Artificial Intelligence,Natural language processing
dc.title MAKİNE ÖĞRENMESİ TEKNİKLERİ İLE VERİ ÇOĞALTMA KULLANARAK BİR MOBİL UYGULAMADA KULLANICI YORUMLARININ SINIFLANDIRILMASI tr-TR
dc.title CLASSIFICATION OF USER COMMENTS IN A MOBILE APPLICATION USING DATA AUGMENTATION WITH MACHINE LEARNING TECHNIQUES en-US
dc.type info:eu-repo/semantics/article
dc.citation Amasyalı, M.F., Yıldırım, T., 2004. Otomatik haber metinleri sınıflandırma, 224-226 pp, (in Turkish).
dc.citation Amasyalı, M.F., Diri, B., 2006. Automatic Turkish text categorization in terms of author, genre and gender, In International Conference on Application of Natural Language to Information Systems, 221-226 pp.
dc.citation Bengisu, E. R. D. İ., Şahin, E. A., Toydemir, M. S., Dokeroglu, T. Makine Öğrenmesi Algoritmaları ile Trol Hesapların Tespiti. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(1), 430-442 pp, (in Turkish).
dc.citation Celik, O., Osmanoglu, U.O., 2019. Comparing to Techniques Used in Customer Churn Analysis, Journal of Multidisciplinary Developments, 4(1):30-38 pp.
dc.citation Chaffar S., Inkpen D., 2011. Using a heterogeneous dataset for emotion analysis in text, Butz C., Lingras P. (eds) Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol 6657. Springer, Berlin, Heidelberg, 62-71 pp.
dc.citation Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W. P., 2002. SMOTE: synthetic minority over-sampling technique, Journal of artificial intelligence research, 16, 321-357 pp.
dc.citation Estabrooks A., 2000. A combination scheme for inductive learning from imbalanced data sets, Diss. DalTech.
dc.citation Estabrooks A., Jo T., Japkowicz N., 2004. A multiple resampling method for learning from imbalanced datasets, Computational intelligence, 20(1): 18-36 pp.
dc.citation Fernández, A., Garcia, S., Herrera, F., Chawla, N.V. , 2018. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary, Journal of artificial intelligence research, 61, 863-905 pp.
dc.citation Friedl M.A., Brodley C.E., 1997. Decision tree classification of land cover from remotely sensed data, Remote sensing of environment, 61(3):399-409 pp.
dc.citation Güran, A., Akyokus¸, S., Bayazıt, N.G., Gürbüz, M.Z., 2009. Turkish text categorization using n-gram words, In Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications, 369-373 pp.
dc.citation Güven, A., Bozkurt, Ö.Ö., Kalıpsız, O., 2006. Advanced Information Extraction with n-gram based LSI, In Proceedings of World Academy of Science, Engineering and Technology, 17:13-18 pp.
dc.citation Hu J., Min J., 2018. Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model, Cognitive Neurodynamics, 431-440 pp.
dc.citation Jordan, S. E., Hovet, S. E., Fung, I. C. H., Liang, H., Fu, K. W., & Tse, Z. T. H. (2019). Using Twitter for public health surveillance from monitoring and prediction to public response. Data, 4(1), 6.
dc.citation Monisha A., Christina S.S., Santiago N., 2018. Decision Support System for a Chronic Disease- Diabetes, International Journal of Computer & Mathematical Sciences(IJCMS), 7(3):126-131 pp.
dc.citation Müller K.R., Smola A., Ratsch G., Scholkopf B., Kohlmorgen J., Vapnik V. , 1997. Predicting time series with support vector machines, International Conference on Artificial Neural Networks Springer, Berlin, Heidelberg, 999-1004 pp.
dc.citation Özgür, L., Güngör, T., Gürgen, F., 2004. Adaptive anti-spam filtering for agglutinative languages: a special case for Turkish.”, Pattern Recognition Letters, 25(16):1819-1831 pp.
dc.citation Petkovic D., Altman R., Wong M., Vigil A., 2018. Improving the explainability of Random Forest classifier?user centered approach, Pacific Symposium on Biocomputing, 23:204-215 pp.
dc.citation Schlögl A., Lee F., Bischof H., Pfurtscheller G., 2005. Characterization of four-class motor imagery EEG data for the BCI- competition, Journal of neural engineering, 2(4): L14.
dc.citation Schwarm S.E., Ostendorf M., 2015. Reading level assessment using support vector machines and statistical language models, Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, 523-530 pp.
dc.citation Shi, T., Kang, K., Choo, J., & Reddy, C. K. (2018, April). Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations. In Proceedings of the 2018 World Wide Web Conference (pp. 1105-1114).
dc.citation Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., & Demirbas, M. (2010, July). Short text classification in twitter to improve information filtering. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 841-842).
dc.citation Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., 2007. Cost-sensitive boosting for classification of imbalanced data, Pattern Recognition, 40(12): 3358-3378 pp.
dc.citation Tantuğ, A. C. , 2016. Metin Sınıflandırma, Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 5(2) (in Turkish).
dc.citation Tüfekci, P., Uzun, E., Sevinç, B, 2012. Text classification of web based news articles by using Turkish grammatical features, 20th Signal Processing and Communications Applications Conference, 1-4 pp.
dc.citation Vapnik V. , 1995 The nature of statistical learning theory, Springer, 2nd edition, New York, USA, 32-40 pp.
dc.citation Yang L., Zhang X., Liang S., Yao Y., Jia K., Jia A., 2018. Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method, Remote Sensing, 10(2): 185.
dc.citation Yildiz, H.K., Gençtav, M., Usta, N., Diri, B., Amasyali, M. F. , 2007. A new feature extraction method for text classification, IEEE 15th Signal Processing and Communications Applications, 1-4 pp.


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account